Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Tomato ripening study highlights cell wall component interactions

Tomato fruit ripening involves intricate biochemical and structural changes, particularly within the cell wall, which are vital for the fruit's final texture and quality. These changes include modifications in polysaccharides and proteins, but the specific roles of various cell wall components, such as arabinogalactan proteins (AGPs), remain unclear. Given these challenges, it is crucial to conduct in-depth research to unravel the molecular interactions within the cell wall during ripening.

A study conducted by the Institute of Agrophysics, Polish Academy of Sciences, and the Mediterranean Agronomic Institute of Chania, published on May 24, 2024, in Horticulture Research, explores the impact of AGPs on tomato ripening.

Using advanced molecular and imaging techniques, the researchers examined how modifying the SlP4H3 gene, responsible for AGP synthesis, affects cell wall integrity during fruit ripening. The findings highlight the essential role of AGPs and other cell wall components in maintaining fruit quality.

The study centered on the SlP4H3 gene, which encodes proline hydroxylase, an enzyme critical for AGP synthesis. Altering this gene's expression led to significant disruptions in cell wall structure, especially in the interactions between AGPs and other polysaccharides like homogalacturonans (HGs) and rhamnogalacturonan I (RG-I). Overexpression of SlP4H3 increased AGP content, while gene silencing resulted in a notable decrease.

Read more at: phys.org

Publication date: