Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

First draft genome resource for the tomato black leaf mold pathogen Pseudocercospora fuligena

Pseudocercospora fuligena is a fungus that causes black leaf mold, an important disease of tomato in tropical and subtropical regions of the world. Despite its economic importance, genomic resources for this pathogen are scarce and no reference genome was available thus far.

In a new study, researchers report a 50.6 Mb genome assembly for P. fuligena, consisting of 348 contigs with an N50 value of 0.407 Mb. In total, 13,764 protein-coding genes were predicted with an estimated BUSCO completeness of 98%. Among the predicted genes there were 179 candidate effectors, 445 carbohydrate-active enzymes, and 30 secondary metabolite gene clusters.

The resources presented in the study will allow genome-wide comparative analyses and population genomic studies of this pathogen, ultimately improving management strategies for black leaf mold of tomato.

Access the full study at APS.

Publication date: