Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Water-soluble carbon nanoparticles improve lettuce under salinity stress

Seed germination is a critical developmental phase for seedling establishment and crop production. Increasing salinity stress associated with climatic change can pose a challenge for seed germination and stand establishment of many crops including lettuce.

In a recent study, researchers show that water soluble carbon nanoparticles (CNPs) can significantly promote seed germination without affecting seedling growth. Twenty-seven varieties of lettuce (Lactuca sativa) were screened for sensitivity to germination in 150 and 200 mM NaCl, and six salt-sensitive varieties (Little Gem, Parris Island, Breen, Butter Crunch, Muir, and Jericho) were selected and primed with 0.3% soluble carbon nanoparticles.

Pretreatment with CNPs significantly improved seed germination under 150 mM NaCl and high temperature. CNP treatment slightly inhibited the elongation of primary roots but promoted lateral root growth and accumulation of chlorophyll content of seedlings grown under salt stress.

Despite different lettuce varieties exhibiting a distinct response to nanoparticle treatments, results from this study indicate that soluble nanoparticles can significantly improve lettuce seed germination under salinity stress, which provide fundamental evidence on the potential of nanoparticles in agricultural application to improve crop yield and quality under stressful conditions.

Source: MDPI.

Publication date: