Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Susceptibility of basil species and cultivars to Peronospora belbahrii

Sweet basil (Ocimum basilicum) is the most economically important culinary herb in the United States. In 2007, a new disease, basil downy mildew (BDM), caused by the oomycete pathogen Peronospora belbahrii, was introduced into the United States and has since caused significant losses in commercial basil production.

Although no commercial sweet basils available are resistant to P. belbahrii, other species of Ocimum have exhibited potential tolerance, resistance, or both. The objectives of this work were to determine if leaf morphological characteristics including stomata density and leaf curvature correlated with infection of plants by P. belbahrii, and thus could be used as selected characters in plant breeding. In 2011, 20 Ocimum cultivars including sweet (O. basilicum), cinnamon (O. basilicum), clove (O. basilicum), citrus (Ocimum ×africanum syn. Ocimum citriodorum), spice (Ocimum americanum syn. Ocimum canum), and holy basils (Ocimum tenuiflorum syn.

Ocimum sanctum) were evaluated for susceptibility to downy mildew. Sweet basils were determined to be the most susceptible; cinnamon, clove, and Thai types were moderately susceptible; and citrus, spice, and holy types were least susceptible to downy mildew. Using those same 20 Ocimum species and cultivars, stomata length and density and leaf curvature were measured and correlated with downy mildew incidence and severity.

In general, basil species with higher stomatal densities had higher downy mildew incidence and severity. High stomatal densities were mainly found in the sweet, cinnamon, and clove basils. Citrus and spice species with longer stomatal lengths generally exhibited lower downy mildew incidence.

Holy basil, the least susceptible of all Ocimum sp. to P. belbahrii evaluated in this study, had the greatest stomatal density and shortest stomatal length. Some sweet basil cultivars with the highest downy mildew incidence also had the greatest downward leaf curvature, whereas other sweet basil cultivars with moderate downy mildew incidence had leaves that were nearly flat or curved upward. Holy, citrus, and spice basils with low downy mildew incidence had leaves that were nearly flat or curved upward.

This study suggests that leaf curvature and stomatal density and length affect downy mildew development and sporulation. Considerations of these leaf morphological characteristics may be useful phenotypic traits in breeding for downy mildew resistance in Ocimum.

Access the full study at HortScience.
Publication date: